Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 300(2): 105626, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211818

RESUMO

Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 "respirasome" SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Humanos , Células HEK293
2.
Curr Oncol ; 30(11): 9953-9967, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999143

RESUMO

Background: Hematopoietic cell transplantation (HCT) is an established therapy for hematologic malignancies and serious non-malignant blood disorders. Despite its curative potential, HCT is associated with substantial toxicity and health resource utilization. Effective delivery of HCT requires complex hospital-based care, which limits the number of HCT centres in Canada. In Canada, the quantity, indications, temporal trends, and outcomes of patients receiving HCT are not known. Methods: A retrospective cohort study of first transplants reported to the Cell Therapy Transplant Canada (CTTC) registry between 2000 and 2019. We determined overall survival (OS) and non-relapse mortality (NRM), categorizing the cohort into early (2000-2009) and later (2010-2019) eras to investigate temporal changes. Results: Of 18,046 transplants, 7571 were allogeneic and 10,475 were autologous. Comparing the two eras, allogeneic transplants increased in number by 22.3%, with greater use of matched unrelated donors in the later era. Autologous transplants increased by 10.9%. Temporal improvements in NRM were observed in children and adults. OS improved in pediatric patients and in adults receiving autologous HCT. In adults receiving allogeneic HCT, OS was stable despite the substantially older age of patients in the later era. Interpretation: HCT is an increasingly frequent procedure in Canada which has expanded to serve older adults. Noted improvements in NRM and OS reflect progress in patient and donor selection, preparation for transplant, and post-transplant supportive care. In allogeneic HCT, unrelated donors have become the most frequent donor source, highlighting the importance of the continued growth of volunteer donor registries. These results serve as a baseline measure for quality improvement and health services planning in Canada.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Recidiva Local de Neoplasia , Idoso , Criança , Humanos , Estudos de Coortes , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sistema de Registros , Estudos Retrospectivos , Transplante Homólogo , Adulto
3.
Curr Res Neurobiol ; 5: 100112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020812

RESUMO

SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.

4.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584609

RESUMO

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Mitocôndrias Musculares/metabolismo
5.
Cytotherapy ; 25(9): 939-945, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37191614

RESUMO

BACKGROUND AIMS: Interest in cell-based therapy using extracellular vesicles (EVs) is intensifying, building upon promising preclinical research and a handful of published clinical studies. Registered clinical trials remain small, heterogeneous in design and underpowered to determine safety and efficacy on their own. A scoping review of registered studies can identify opportunities to pool data and perform meta-analysis. METHODS: Registered trials were identified by searching clinical trial databases (Clinicaltrials.gov, the World Health Organization International Clinical Trials Registry Platform and the Chinese Clinical Trial Registry) on June 10, 2022. RESULTS: Seventy-three trials were identified and included for analysis. Mesenchymal stromal cells (MSCs) were the most common cell type from which EVs were derived (49 studies, 67%). Among the 49 identified MSC-EV studies, 25 were controlled trials (51%) with a combined total of 3094 participants anticipated to receive MSC-derived EVs (2225 in controlled studies). Although EVs are being administered to treat a broad range of conditions, trials treating patients with coronavirus disease-2019 and/or acute respiratory distress syndrome were observed most commonly. Despite heterogeneity between studies, we anticipate that at least some of the studies could be combined in meaningful meta-analysis and that a combined sample size of 1000 patients would provide the ability to detect a ≥5% difference in mortality with MSC-EVs compared to controls and could be achieved by December 2023. CONCLUSIONS: This scoping review identifies potential barriers that may stall clinical translation of EV-based treatment, and our analysis calls for more standardized product characterization, use of quantifiable product quality attributes and consistent outcome reporting in future clinical trials.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , COVID-19/terapia , Vesículas Extracelulares/metabolismo , Projetos de Pesquisa , Terapia Baseada em Transplante de Células e Tecidos
6.
Neurol Genet ; 9(1): e200048, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37077559

RESUMO

Background and Objectives: Coenzyme Q10 (CoQ10) is an important electron carrier and antioxidant. The COQ7 enzyme catalyzes the hydroxylation of 5-demethoxyubiquinone-10 (DMQ10), the second-to-last step in the CoQ10 biosynthesis pathway. We report a consanguineous family presenting with a hereditary motor neuropathy associated with a homozygous c.1A > G p.? variant of COQ7 with abnormal CoQ10 biosynthesis. Methods: Affected family members underwent clinical assessments that included nerve conduction testing, histologic analysis, and MRI. Pathogenicity of the COQ7 variant was assessed in cultured fibroblasts and skeletal muscle using a combination of immunoblots, respirometry, and quinone analysis. Results: Three affected siblings, ranging from 12 to 24 years of age, presented with a severe length-dependent motor neuropathy with marked symmetric distal weakness and atrophy with normal sensation. Muscle biopsy of the quadriceps revealed chronic denervation pattern. An MRI examination identified moderate to severe fat infiltration in distal muscles. Exome sequencing demonstrated the homozygous COQ7 c.1A > G p.? variant that is expected to bypass the first 38 amino acid residues at the n-terminus, initiating instead with methionine at position 39. This is predicted to cause the loss of the cleavable mitochondrial targeting sequence and 2 additional amino acids, thereby preventing the incorporation and subsequent folding of COQ7 into the inner mitochondrial membrane. Pathogenicity of the COQ7 variant was demonstrated by diminished COQ7 and CoQ10 levels in muscle and fibroblast samples of affected siblings but not in the father, unaffected sibling, or unrelated controls. In addition, fibroblasts from affected siblings had substantial accumulation of DMQ10, and maximal mitochondrial respiration was impaired in both fibroblasts and muscle. Discussion: This report describes a new neurologic phenotype of COQ7-related primary CoQ10 deficiency. Novel aspects of the phenotype presented by this family include pure distal motor neuropathy involvement, as well as the lack of upper motor neuron features, cognitive delay, or sensory involvement in comparison with cases of COQ7-related CoQ10 deficiency previously reported in the literature.

7.
Transfusion ; 63(5): 1060-1066, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961333

RESUMO

BACKGROUND: Human leukocyte antigen (HLA)-matched unrelated donors are not available for some patients considered for allogeneic hematopoietic cell transplantation, particularly among certain ethnic groups. Simulated recruitment modeling can inform efforts to find new matches for more patients. METHODS: Simulated recruits were generated by assigning a pair of donor HLA haplotypes from historical data files and matched against HLA data of patient searches in the Canadian Blood Services Stem Cell Registry. Recruitment cohorts reflected the proportion of five specific ethnic groups in the 2016 Canadian census data. RESULTS: Novel 8/8 HLA matches between simulated recruits and patients increased linearly with larger recruitment cohorts. The proportion of novel 8/8 HLA matches from Caucasian, Hispanic, and Native American/First Nations recruits was equal to or greater than their relative proportion in the recruited cohort (match to: recruit ratio (MRR) ≥ 1). In contrast, African American and Asian & Pacific Islander recruits represented a smaller proportion of novel matches relative to their percentage of the recruited cohort (MRR <1). The proportion of novel 7/8 HLA-matches from each ethnic group was approximately the same as their proportion in the recruited cohort (MRR ~ 1) and high rates of 7/8 HLA-matching already exist within the Canadian Blood Services registry for all ethnic groups. CONCLUSION: Continued large recruitment cohorts are needed to add new 8/8 HLA matches to registry inventories. Likelihoods of novel HLA matches varied across ethnic groups, reflecting varied HLA haplotype frequencies across groups. Simulated cohort modeling can inform recruitment strategies that will generate new donor options for patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doadores não Relacionados , Humanos , Etnicidade , Teste de Histocompatibilidade , Canadá , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I , Haplótipos , Antígenos de Histocompatibilidade Classe II , Células-Tronco , Sistema de Registros
8.
Curr Oncol ; 30(3): 3549-3556, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975483

RESUMO

BACKGROUND AND OBJECTIVES: The COVID-19 pandemic profoundly influenced unrelated donor (UD) allogeneic peripheral blood stem cell (PBSC) collections. Changes included efforts to minimize COVID-19 exposure to donors and cryopreservation of products. The extent to which the efficacy and safety of PBSC donations were affected by the pandemic is unknown. METHODS: Prospective cohort analysis of PBSC collections comparing pre-pandemic (01 April 2019-14 March 2020) and pandemic (15 March 2020-31 March 2022) eras. RESULTS: Of a total of 291 PBSC collections, cryopreservation was undertaken in 71.4% of pandemic donations compared to 1.1% pre-pandemic. The mean requested CD34+ cell dose/kg increased from 4.9 ± 0.2 × 106 pre-pandemic to 5.4 ± 0.1 × 106 during the pandemic. Despite this increased demand, the proportion of collections that met or exceeded the requested cell dose did not change, and the mean CD34+ cell doses collected (8.9 ± 0.5 × 106 pre-pandemic vs. 9.7 ± 0.4 × 106 during the pandemic) remained above requested targets. Central-line placements were more frequent, and severe adverse events in donors increased during the pandemic. CONCLUSION: Cryopreservation of UD PBSC products increased during the pandemic. In association with this, requested cell doses for PBSC collections increased. Collection targets were met or exceeded at the same frequency, signaling high donor and collection center commitment. This was at the expense of increased donor or product-related severe adverse events. We highlight the need for heightened vigilance about donor safety as demands on donors have increased since the pandemic.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Pandemias , Doadores não Relacionados , Estudos Prospectivos , Doadores de Sangue
9.
Curr Oncol ; 29(12): 9572-9581, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36547166

RESUMO

BACKGROUND: The Canadian Blood Services Cord Blood Bank (CBS CBB) was created to improve access to stem cell products for transplantation for patients across ethnic groups. An analysis of distributed units is needed to assess the effectiveness of the bank to meet the needs of patients from different ethnic groups. METHODS: A descriptive analysis was performed on all cord blood units distributed from the CBS' CBB as of 30 June 2022. RESULTS: Distribution of the first 60 units based on CBS' CBB inventory has been linear over time. A similar proportion of cord blood unit (CBU) recipients were pediatric or adult. More than half of the cord blood units (56.7%) were distributed to recipients outside of Canada, and CBUs were used to treat a broad range of hematologic and immune disorders. 43.3% of distributed CBUs were of non-Caucasian ethnicity and 18% were from donors self-reporting as multi-ethnic. The mean total nucleated cell counts and total CD34+ cell counts were 1.9 ± 0.1 × 109 cells and 5.3 ± 0.5 × 106 CD34+ cells, respectively. CD34+ cells per kg (recipient weight) varied significantly between pediatric (age 0-4), adolescent (age 5-17) and adult recipients (age 18 and older) (3.1 ± 0.5, 1.4 ± 0.5 and 0.9 ± 0.07 × 105 CD34+ cells/kg, respectively). HLA matching was 6/6 (15%), 5/6 (47%) or 4/6 (38%). CONCLUSIONS: The CBS' CBB has facilitated the utilization of banked units for patients across a broad range of ages, geographic distribution, ethnicity, and diseases. Distributed units were well matched for HLA alleles and contained robust cell counts, reflecting a high-quality inventory with significant utility.


Assuntos
Bancos de Sangue , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Canadá , Antígenos HLA/genética , Alelos , Transplante de Células-Tronco de Sangue do Cordão Umbilical/etnologia
10.
EBioMedicine ; 83: 104192, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965199

RESUMO

BACKGROUND: Current paradigms for predicting weight loss in response to energy restriction have general validity but a subset of individuals fail to respond adequately despite documented diet adherence. Patients in the bottom 20% for rate of weight loss following a hypocaloric diet (diet-resistant) have been found to have less type I muscle fibres and lower skeletal muscle mitochondrial function, leading to the hypothesis that physical exercise may be an effective treatment when diet alone is inadequate. In this study, we aimed to assess the efficacy of exercise training on mitochondrial function in women with obesity with a documented history of minimal diet-induced weight loss. METHODS: From over 5000 patient records, 228 files were reviewed to identify baseline characteristics of weight loss response from women with obesity who were previously classified in the top or bottom 20% quintiles based on rate of weight loss in the first 6 weeks during which a 900 kcal/day meal replacement was consumed. A subset of 20 women with obesity were identified based on diet-resistance (n=10) and diet sensitivity (n=10) to undergo a 6-week supervised, progressive, combined aerobic and resistance exercise intervention. FINDINGS: Diet-sensitive women had lower baseline adiposity, higher fasting insulin and triglycerides, and a greater number of ATP-III criteria for metabolic syndrome. Conversely in diet-resistant women, the exercise intervention improved body composition, skeletal muscle mitochondrial content and metabolism, with minimal effects in diet-sensitive women. In-depth analyses of muscle metabolomes revealed distinct group- and intervention- differences, including lower serine-associated sphingolipid synthesis in diet-resistant women following exercise training. INTERPRETATION: Exercise preferentially enhances skeletal muscle metabolism and improves body composition in women with a history of minimal diet-induced weight loss. These clinical and metabolic mechanism insights move the field towards better personalised approaches for the treatment of distinct obesity phenotypes. FUNDING: Canadian Institutes of Health Research (CIHR-INMD and FDN-143278; CAN-163902; CIHR PJT-148634).


Assuntos
Insulinas , Obesidade , Trifosfato de Adenosina/metabolismo , Canadá , Dieta Redutora , Exercício Físico/fisiologia , Feminino , Humanos , Insulinas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Triglicerídeos/metabolismo , Redução de Peso
11.
Front Physiol ; 12: 604210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762963

RESUMO

Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that Grx2 may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that Grx2 deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 Grx2-/- mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of Grx2-/- skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in Grx2-/- muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of tibialis anterior muscle, and decreased body weight in Grx2 deficient mice. Together, these are the first results to show that Grx2 regulates skeletal muscle mitochondrial structure, and autophagy.

12.
Obes Rev ; 22(5): e13164, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33442950

RESUMO

Skeletal muscle possesses dramatic metabolic plasticity that allows for the rapid adaptation in cellular energy transduction to meet the demands of the organism. Obesity elicits changes in skeletal muscle structure and function, resulting in the accumulation of intramuscular lipids. The accumulation of intramuscular lipids in obesity is associated with impaired skeletal muscle mitochondrial content and function. Mitochondria exist as a dynamic network that is regulated by the processes of biogenesis, fusion, fission, and mitophagy. In this review, we outline adaptations in molecular pathways that regulate mitochondrial structure and function in obesity. We highlight the emerging role of dysregulated skeletal muscle macroautophagy and mitochondrial turnover in obesity. Future research should further elucidate the role of mitophagy in observed reductions in mitochondrial content and function during obesity.


Assuntos
Mitocôndrias Musculares , Mitocôndrias , Humanos , Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Obesidade/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165982, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002579

RESUMO

Altered redox biology and oxidative stress have been implicated in the progression of heart failure. Glutaredoxin-2 (GRX2) is a glutathione-dependent oxidoreductase and catalyzes the reversible deglutathionylation of mitochondrial proteins. Sirtuin-3 (SIRT3) is a class III histone deacetylase and regulates lysine acetylation in mitochondria. Both GRX2 and SIRT3 are considered as key in the protection against oxidative damage in the myocardium. Knockout of either contributes to adverse heart pathologies including hypertrophy, hypertension, and cardiac dysfunction. Here, we created and characterized a GRX2 and SIRT3 double-knockout mouse model, hypothesizing that their deletions would have an additive effect on oxidative stress, and exacerbate mitochondrial function and myocardial structural remodeling. Wildtype, single-gene knockout (Sirt3-/-, Grx2-/-), and double-knockout mice (Grx2-/-/Sirt3-/-) were compared in heart weight, histology, mitochondrial respiration and H2O2 production. Overall, the hearts from Grx2-/-/Sirt3-/- mice displayed increased fibrosis and hypertrophy versus wildtype. In the Grx2-/- and the Sirt3-/- we observed changes in mitochondrial oxidative capacity, however this was associated with elevated H2O2 emission only in the Sirt3-/-. Similar changes were observed but not worsened in hearts from Grx2-/-/Sirt3-/- mice, suggesting that these changes were not additive. In human myocardium, using genetic and histopathological data from the human Genotype-Tissue Expression consortium, we confirmed that SIRT3 expression correlates inversely with heart pathology. Altogether, GRX2 and SIRT3 are important in the control of cardiac mitochondrial redox and oxidative processes, but their combined absence does not exacerbate effects, consistent with the overall conclusion that they function together in the complex redox and antioxidant systems in the heart.


Assuntos
Metabolismo Energético , Glutarredoxinas/deficiência , Insuficiência Cardíaca/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Sirtuína 3/deficiência , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia
14.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118854, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926942

RESUMO

Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.


Assuntos
Antioxidantes/metabolismo , Glutationa/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/genética , GTP Fosfo-Hidrolases/genética , Glutationa/biossíntese , Glicólise/genética , Humanos , Fusão de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...